
THE DESCARTES RULE OF SWEEPS AND THE DESCARTES SIGNATURE

B.D.S. “DON” MCCONNELL

Abstract. The Descartes Rule of Signs, which establishes a bound on the number of positive roots
of a polynomial with real coefficients, is extended to polynomials with complex coefficients. The
extension is modified to bound the number of complex roots in a given direction on the complex
plane, giving rise to the Descartes Signature of a polynomial.

The search for the roots of a polynomial is sometimes aided by the following result, often taught
in high school:

Theorem 1 (The Descartes Rule of Signs). Let

p(x) := a0x
m0 + a1x

m1 + a2x
m2 + · · ·+ anx

mn

be a polynomial with real coefficients a0, a1, . . . , an, all non-zero, and integer exponents 0 ≤ m0 <
m1 < · · · < mn.1 The number of positive roots of p is then at most the number of sign changes in
the coefficient sequence. More specifically, the number of positive roots differs from the number of
sign changes by an even number.

Discussion and proof of the Rule of Signs can be found in the mathematical literature dating back
to Descartes’ own work in 1637, as well as online.2

As fascinating and elegant as the Rule may be, it never seemed entirely satisfying. One learns
early on in mathematics that even the study of quadratic polynomials isn’t “complete” without
consideration of non-real complex numbers, yet this iconic element of polynomial lore all but ignores
them.3

As we show, making up for this oversight requires only re-thinking sign changes in a manner
that ties in quite nicely with the conceptually-illuminating revelation that “multiplication by a
negative” in arithmetic corresponds to a geometric half-turn about the origin of the complex plane.
Unfortunately, our proof of the adapted Rule of Signs relies on Descartes’ original. Therefore, while
the rotational view of complex multiplication makes the arithmetic intuitive, our new interpretation
of the Rule of Signs does not (yet) provide any “ah-ha!” insights into the result.

Date: Originally drafted 23 September, 2007. Updated 14 March, 2008, with changes in some notation, correction
of some (but probably not all) errors, considerable simplification of the statement of the Rule of Sweeps itself, new
images, and an epilog referencing the related submission in the Wolfram Demonstration Project. Updated 21 April,
2008, with additional changes in notation, a once-again-revised statement of the Rule, and explicit sweep formulas.

1In our notation, the traditional (lowest-power) “trailing term” comes first and (highest-power) “leading term”
comes last; we will refer to them as the “initial term” and “final term”, respectively.

2See, for instance, http://www.cut-the-knot.org/fta/ROS2.shtml
3Of course, using the Rule, one can occasionally glean some information about the number of non-real roots:

subtract the maximum number of positive and (after a standard trick) negative roots from the polynomial’s degree.
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1. The Rule of Sweeps

1.1. Preliminaries. Let

(1) r(x) := c0x
m0 + c1x

m1 + · · ·+ cnx
mn

be a polynomial with complex coefficients, all non-zero, and integer exponents 0 ≤ m0 < m1 <
· · · < mn. We can write r(x) = p(x) + i · q(x), where

(2) p(x) := a0x
m0 + a1x

m1 + · · ·+ anx
mn q(x) := b0x

m0 + b1x
m1 + · · ·+ bnx

mn

and ck = ak + ibk with real ak and bk for each k. Clearly, any positive root of r is a positive root
of both p and q, so our analysis of r amounts to a tandem analysis of p and q via the Rule of
Signs, with one provision: although the coefficient sequence {ck} is not all-zero, (at most) one of
the sequences {ak} or {bk} might be, defying attempts to count sign changes; we shall therefore
agree that

Agreement. The number of sign changes in an all-zero coefficient sequence is infinite.

As any number whatsoever is a root of an identically-zero polynomial, this Agreement allows us to
preserve the conclusion that the number of roots is no greater than the number of coefficient sign
changes, and we may write

(3) # of positive roots of r ≤ min (# of sign changes in {ak},# of sign changes in {bk})

Our strategy is to compute an upper bound on right-hand side of (3), using the coefficient sequence
{ck}. To do this, we introduce sweeps.

1.2. Sweeps defined. Imagine a needle with one end anchored at the origin of the complex plane
and with the other end initially pointing in the direction of c0. Let the free end of the needle sweep
—always counter-clockwise— to point in the directions of c1, c2, etc., and finally cn, “stalling in
place” when successive coefficients are identical, and tracing out a “sweep spiral”. (See Figure 1.)

We define the positive sweep of the polynomial as the total angle swept by the counter-clockwise
needle, computing it thusly:4

(4) sweep+(r) :=
n∑
k=1

arg+(ck/ck−1) where 0 ≤ arg+(z) < 2π

Likewise, we define the negative sweep of the polynomial as (the absolute value of) the total angle
swept by the needle if it were to move always clockwise. This is equivalent to a counter-clockwise
sweep with the needle taking the coefficients in reverse order:

(5) sweep−(r) :=
n∑
k=1

arg+(ck−1/ck)

4Equivalently (and perhaps more in keeping with the spiral concept), we associate with the coefficient sequence
{ck} a non-decreasing “argument sequence” {θk}, where θ0 = arg(c0) and, for 0 < k ≤ n, each θk is the smallest
value such that θk = arg(ck) (mod 2π) and θk−1 ≤ θk. Each θk serves as a kind of mile marker, indicating the
position of ck along the sweep spiral. The positive sweep, as the total angular distance, is then θn− θ0. The negative
sweep arises from a similarly-constructed non-increasing argument sequence.
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Figure 1. Sweep spirals for the polynomial r(x) := 1+(−1+ i)x+(1− i)x2 + ix3 +
(−1 − i)x4. Dots labeled “k” correspond to the coefficient of xk. The (blue) outer
spiral and (red) inner spiral indicate sweep+(r) = 19π/4 and sweep−(r) = 13π/4.

As Figure 1 suggests, differently-directed sweeps are usually not equal. The smaller value will
optimize our results, so we define the (undirected) sweep accordingly:

(6) sweep(r) := min( sweep+(r), sweep−(r) )

This minimal sweep is guaranteed not to exceed nπ: when arg ck 6= arg ck−1, we have arg+(ck/ck−1)+
arg+(ck−1/ck) = 2π; when arg ck = arg ck−1, that sum is 0. Thus, sweep+(r) + sweep−(r) ≤ 2nπ,
so that at most one sweep (and, therefore, their minimum) is less than or equal to nπ.

To be slightly more precise (and to facilitate discussion is Section 2.1), we define a staller as a
coefficient ck (with 0 < k ≤ n) such that arg ck = arg ck−1. (That is, each staller represents an
instance of the sweeping needle stalling in place.) Then,

(7) sweep+(r) + sweep−(r) = 2(n− s)π where s := the number of stallers of r

Consequently,

(8) sweep(r) ≤ (n− s)π

1.3. The New Rule. Note that a polynomial’s entire family of roots (positive, negative, zero,
or even non-real) is preserved if we multiply through by any non-zero complex constant. Note
also that the sweeps are preserved: arithmetically, the multiplier cancels in the quotient within
each term of the underlying computational definitions (4) and (5); geometrically, as points in the
complex plane, the resulting polynomial’s coefficients —and the sweep spirals joining them— are
obtained from the original polynomial’s coefficients —and sweep spirals— via rotation about the
origin through a common angle (namely, the argument of the multiplied value).5 We may therefore
make the simplifying assumption that the polynomial’s initial coefficient is a positive real number,
so that the sweeping needle starts out directed along the positive ray of the x axis. In this scenario,
upper bounds on the number of sign changes in {ak} and {bk} (from (2)) can be computed directly
from the sweeps.

5The coefficients are also dilated in the origin by a common positive factor (the modulus of that multiplied value),
although this is irrelevant to sweep computations as sweeps depend only upon direction.
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The number of sign changes in {ak} is at most the number of times the sweeping needle crosses
—not merely meets— the y axis:

(9) # of sign changes in {ak} ≤
1
2

⌈
2
π
sweep(r)

⌉
Here, the ceiling expression converts sweep(r) into the number of quadrants entered by the sweep;
division by 2 takes into account that only every other quadrant entry marks a y-axis crossing.

On the other hand, the sequence {bk} is either all-zero (with, by our Agreement, “infinitely many”
sign changes) or else the number of sign changes is bounded by the number of times the needle
crosses the x axis:
(10)

# of sign changes in {bk} =∞ or # of sign changes in {bk} ≤
1
2

( ⌈
2
π
sweep(r)

⌉
− 1

)

The minimal bound on the changes in sign (and thus on the number of positive roots) is therefore
the {ak} bound (9) when {bk} is all-zero, and the finite {bk} bound (from (10)) otherwise. We can
simplify the corresponding bounds as follows:

• When the {bk} are all zero, the simplified (with c0 real) polynomial’s coefficients lie on the
x axis, so that sweep(r) is necessarily an integer multiple of π. The {ak} bound reduces to
1
πsweep(r).

For a non-simplified polynomial (with c0 possibly non-real), the condition for this case is
that all coefficients lie on a common line through the origin; that is, arg c0 ≡ arg ck (mod π)
for all k.

• In the other case, since we are bounding integers, we can apply the floor function to the for-
mula to get

⌊
1
2

⌈
2
πsweep(r)

⌉
− 1
⌋
, which is equivalent to

⌈
1
πsweep(r)

⌉
− 1. Being somewhat

averse to taking the ceiling of an expression only to subtract 1 from the result (obtaining,
in most cases, the floor of the original expression), we express {bk} bound as “b 1

πsweep(r)c,
except 1 less when sweep(r) is a multiple of π”. (Note that sweep(r) is a multiple of π if
and only if arg c0 ≡ arg cn (mod π).)

The formula b 1
πsweep(r)c applies to the given {ak} bound. Therefore, we can combine our cases

by appropriately adjusting the exception in the {bk} bound to obtain our sweeping generalization
of the Rule of Signs:

Theorem 2 (The Descartes Rule of Sweeps). Let

(11) r(x) := c0x
m0 + c1x

m1 + · · ·+ cnx
mn

be a polynomial with complex coefficients c0, c1, . . . , cn, all non-zero, and integer exponents 0 ≤
m0 < m1 < · · · < mn. Then,
(12)

# of positive roots of r ≤


1
π
sweep(r)− 1, if arg c0 ≡ arg cn 6≡ arg ck (mod π) for some k

⌊
1
π
sweep(r)

⌋
, otherwise

We refer to b 1
πsweep(r)c as the primary bound and 1

πsweep(r)− 1 as the exceptional bound.
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Given that we customarily focus on monic (cn = 1) polynomials, this restatement of the Rule may
be worthwhile.

Corollary 3 (The Descartes Rule of Sweeps for Monic Polynomials). A monic polynomial, r, with
(non-zero) complex coefficients, has at most b 1

πsweep(r)c positive roots. If r’s trailing coefficient is
real but some other coefficient is non-real, the bound reduces by 1.

Some notes:

• If r has s stallers (see (8)), we have the immediate corollary that the number of positive
roots of r is at most n−s, or, when the exceptional bound applies, at most n−s−1. (Bear
in mind that n is one less than the number of terms in the polynomial, not necessarily the
degree of the polynomial, or even the degree after factoring out a common power of x.)

• The primary bound of the Rule of Sweeps restates (the bound from) the Descartes Rule of
Signs, because each sign change counted by the Rule of Signs contributes π to a polynomial’s
sweep.

Whereas the Rule of Signs specifies that the difference between the actual root count
and the computed bound is always even (possibly zero), the Rule of Sweeps as given and
proven here offers no such guarantee6; the Rule of Sweeps cannot simply inherit that aspect
from the Rule of Signs (at least from our proof): while the positive roots of p (or q) may
be counted in this way, the positive roots that p and q hold in common need not be.

Also, while one can construct a polynomial that has the maximum number of roots
allowed by the Rule of Signs for its sign-change sequence7, Section 2.4 of this paper shows
that the Rule of Sweeps can provide upper bounds that are impossible to attain.

Why the Rule of Sweeps works isn’t intuitively clear. Until a proof arises that doesn’t rely on the
also-not-intuitively-clear Rule of Signs, this will remain something of a mystery. That said, the
notion of the sweep can be seen to have some relevance to the investigation of polynomial roots: a
(monic) polynomial with non-zero roots r1, r2, . . . , rn has the form

(x− r1)(x− r2) · · · (x− rn) = xn − (r1 + r2 + · · ·+ rn)xn−1 + · · ·+ (−1)nr1r2 · · · rn
Barring reduction modulo 2π, the argument of the constant term is πn+arg r1+arg r2+· · ·+arg rn,
with every positive root (via its associated “−1” multiplier) contributing π to that value; reducing
modulo 2π introduces a pesky ambiguity. Yet, under that same ambiguity, that value is equal
to the polynomial’s coefficient sweep. Somehow, the Rule of Sweeps seems to be teasing out the
lost nature of the constant term’s unreduced argument, setting an upper bound on the number of
multiples of π (hence, the number of positive roots) involved.

2. Roots in a Given Direction: The Descartes Signature

The Descartes Rule of Signs (and, now, the Rule of Sweeps) bounds the number of positive roots —
that is, roots in (angular) direction 0— of a polynomial p. A standard strategy allows us to bound

6One could suggest that a polynomial’s sweep, as with many other angular measures, has a built-in ambiguity,
with a value only known up to some multiple of 2π. Intriguingly, variation of 2π in the sweep corresponds exactly to
variation of 2 in the root count bound. Perhaps further study will show that this connection is (or is not) more than
a coincidence.

7Schmitt, Michael. “New designs for the Descartes rule of signs”. American Mathematical Monthly, Vol. 11, No.
2 (2004):159-164.
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the number of negative roots —roots in direction π— as well: apply the Rule to the auxiliary
polynomial, q(x) := p(−x). (The positive roots of q are the negatives of the negative roots of p.)
With only the Rule of Signs at hand, such root-counting analysis effectively ends once we have
looked in both directions along the real axis.

The Rule of Sweeps, however, allows us to adapt standard strategy to investigate roots in any
direction on the complex plane. While we can consider individual directions in isolation —say,
seeking the number of purely-imaginary roots by looking in directions π/2 and −π/2— we will find
it instructive to look in all directions at once.

Given a polynomial r as in (11), one can bound the number of roots in direction θ —that is, roots
of the form d exp(iθ) with d positive— by applying the Rule of Sweeps to an auxiliary polynomial,
rθ, defined as follows:

rθ(x) := e−iθm0 r(xeiθ) = e−iθm0

(
c0e

iθm0xm0 + c1e
iθm1xm1 + · · ·+ cne

iθmnxmn

)
= c0x

m0 + c1e
iθ(m1−m0)xm1 + · · ·+ cne

iθ(mn−m0)xmn

If d is a positive root of rθ, then 0 = rθ(d) = r(d exp(iθ)), so that d exp(iθ) is a root of r.

Note that multiplying through by exp(−iθm0) keeps the initial coefficient fixed and makes the θ
multipliers negative integers. Consequently, for a given θ, the coefficients of rθ are obtained from
the coefficients of r via a counter-clockwise “fanning out” (that is, with successive coefficients being
rotated about the origin of the complex plane through increasing multiples of the angle θ). Figure
2 depicts the rθ sweep spirals for θ (at or near) a multiple of π/2.

2.1. The functions sweep+
r and sweep−r . The fanning process, and its effect on a polynomial’s

directional sweeps and root count bounds, is best appreciated by considering θ as a parameter
continuously increasing from 0 to 2π. Accordingly, we introduce notation that promotes θ to the
status of function argument, and relegates r to a referential subscript:

(13) sweep+
r (θ) := sweep+(rθ) sweep−r (θ) := sweep−(rθ) sweepr(θ) := sweep(rθ)

Figure 3 provides a comprehensive view of the phenomenon hinted at in Figure 2, revealing the
functions sweep+

r and sweep−r to be steadily increasing (or decreasing), save for a few jump dis-
continuities.

Various properties of the functions are fairly straightforward to derive, and these lead to explicit
formulas. Throughout the following, we take r defined as in (11).

• Each graph is piecewise linear, with each piece having the same slope, namely ±(mn−m0)
(“+” for the positive sweep, “−” for the negative sweep). To see why, ignore “wrap-
around” issues and focus on the general sense that the sweep+ (or sweep−) measures the
counter-clockwise (or clockwise) angular distance between the polynomial’s initial and final
coefficients; the auxiliary polynomial rθ shares its initial coefficient with r, and its final
coefficient arises by rotating r’s final coefficient counter-clockwise by θ(mn −m0). Thus,
the angular distance increases (decreases) at (mn −m0)-times the rate of θ.
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(f) θ = 2.0π

Figure 2. Sweep spirals for rθ, for θ (at or near) a multiple of π/2, indicating a
dramatic jump at θ = π.
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Figure 3. Graphs of sweep+
r (θ) (in blue) and sweep−r (θ) (in red).

• The discontinuities in the graphs appear at values of θ that cause a fanned-out coefficient
ck exp(iθ(mk−m0)) to “catch up with” the fanned-out coefficient ck−1 exp(iθ(mk−1−m0)),
becoming a staller for rθ. (See Figure 2(c) and (d), indicating a discontinuity at θ = π;
another occurs at θ = 5π/4.) Specifically, a discontinuity occurs when

arg ck + θ(mk −m0) = 2mπ + arg ck−1 + θ(mk−1 −m0)
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for some integer m, so that the multi-set of values of θ at which the sweep functions are
discontinuous is

(14) Sr :=
n⋃
k=1

{
2mπ − (arg ck − arg ck−1)

mk −mk−1
(mod 2π)

∣∣∣∣m = 0, 1, . . . ,mk −mk−1 − 1
}

Defining Sr as a multi-set offers some convenient bookkeeping: the number of copies of a
given θ in Sr equals the number of stallers in rθ. Also, |Sr| =

∑
(mk −mk−1) = mn −m0.

For interval I, define σrI := |Sr ∩ I|. In particular, σr[θ] counts the stallers of rθ.

• The vertical jump at a discontinuity is 2πσr[θ]. This is because, as a coefficient approaches
its predecessor, the angular distance between them approaches 2π; when the coefficients are
brought into coincidence (with one becoming a staller), the angular distance drops to 0.

Note that the positive sweep jumps down at these discontinuities, so that the graph in-
cludes the point at the bottom of the jump, leaving a hole at the top. By the same token,
the negative sweep also jumps down when a discontinuity is approached in the opposite
direction, so that the negative sweep’s graph, too, includes the point at the bottom of the
jump, leaving a hole at the top. In both cases, then, a hole is positioned 2πσr[θ] units above
a point on the graph.

• As one expects, the functions are periodic, with period 2π. As θ ranges over the interval
[0, 2π), sweep+

r accumulates 2π(mn −m0) in value from its linear slope, but jumps down-
ward a total of 2πσr[0, 2π) = 2π |Sr| = 2π(mn − m0) via the discontinuities, so that the
function values at θ = 0 and θ = 2π match. A similar argument holds for sweep−r .

• Except for the placement of holes at discontinuities, the graphs of sweep+
r and sweep−r are

mutual reflections in the horizontal line y = nπ: the graph is continuous for values of θ
such that rθ has no stallers; by Equation (7) —reading “s” as σr[θ] (= 0)— the sum of the
signed sweeps in these instances is 2nπ, making their average nπ.

That a hole in the graph of sweep+
r is mirrored by a point on sweep−r (and vice-versa)

follows from a simple continuity argument. Alternatively, we can note that (by the preced-
ing bullet point) such a hole has y-value sweep+

r (θ) + 2πσr[θ], and the point has y-value
sweep−r (θ); the hole’s gain of 2πσr[θ] in value offsets the deficit of 2πσr[θ] in (7).

Given all of the above, we can write explicit formulas for the directional sweep functions:

sweep+
r (θ) = sweep+(r) + θ (mn −m0)− 2πσr(0, θ](15)

sweep−r (θ) = sweep−(r)− θ (mn −m0) + 2πσr[0, θ)(16)

Of course, because sweep+
r (θ) + sweep−r (θ) = 2π(n − σr[θ]), we have no need of the formula for

sweep−r (θ). As for the (minimal) sweep function, our options remain to take sweep+
r (θ) when the

value is less than 2π(n− σr[θ]), or else 2π(n− σr[θ])− sweep+
r (θ); the explicit formulas provide us

little more than the ability to separate θ-dependent computations from constants in the decision
process, as the condition

sweep+
r (θ) ≤ sweep−r (θ)

is equivalent to the (somewhat inelegant) condition

θ(mn −m0) + π (σr[θ]− 2σr(0, θ]) ≤ nπ − sweep+(r)
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2.2. The Descartes Signature of a Polynomial. Applying the Descartes Rule of Sweeps for-
mula to the functions sweep+

r and sweep−r —more specifically, to their minimum— provides a
function that bounds the number of roots of r in each direction θ. We give this new function a
special name.

Definition 1. The Descartes Signature, dsig, for polynomial r (as in (11)) is the function defined
by
(17)

dsig(r) : θ ∈ [0, 2π)→



1
π
sweepr(θ)− 1, arg c0 ≡ θ(mn −m0) + arg cn (mod π), and

arg c0 6≡ θ(mk −m0) + arg ck (mod π) for some k⌊
1
π
sweepr(θ)

⌋
, otherwise

We refer to
⌊

1
πsweepr(θ)

⌋
as the primary component and 1

πsweepr(θ)− 1 as the exceptional com-
ponent of the function.

The graph of the Descartes signature of our on-going numerical example polynomial r appears in
Figure 4. While it allows for the possibility of roots in almost any direction, it shows that at most
three roots can share any given direction, and it identifies two small angular intervals (one ending
at θ = π and another beginning at θ = 5π/4) that serve as the direction of no roots. As with
the original Rule of Signs, the theory of Descartes signatures is vague in general, but it may serve
specific needs.
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4 Π

Figure 4. The graphs of sweepr (purple) and the (scaled-up) corresponding
Descartes Signature (black and green) for the polynomial r from the preceding
sub-section. (Signature values have been multiplied by π to better show the rela-
tionship with the sweep graph. Green dots indicate values at which the exceptional
component of dsig is used.)

Evidently, the discontinuities in sweepr are inherited by dsig(r). The application of the Rule of
Sweeps formula introduces additional discontinuities in dsig(r) at values of θ for which sweepr(θ)
is a multiple of π; but, a polynomial’s sweep is, up to a multiple of 2π, the difference of its initial
and final arguments, arg c0 − arg cn, so that these discontinuities occur when θ is a member of the
set

(18) Tr :=
{
πm− (arg cn − arg c0)

mn −m0
(mod 2π)

∣∣∣∣m = 0, 1, . . . , 2(mn −m0)− 1
}
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Being in Tr puts θ halfway to satisfying the condition for the exceptional component of the definition
of dsig. If we define

(19) Ur :=
n−1⋂
k=1

{
πm− (arg ck − arg c0)

mk −m0
(mod 2π)

∣∣∣∣m = 0, 1, . . . , 2(mk −m0)− 1
}

then we can express dsig as

(20) dsig(r) : θ ∈ [0, 2π)→


1
π
sweepr(θ)− 1, θ ∈ Tr \ Ur⌊
1
π
sweepr(θ)

⌋
, otherwise

The next sub-section shows how straightforward analysis of a particular Descartes signature leads
directly to the Roots of Unity. Sub-section 2.4 shows an analysis that is not nearly as successful at
finding them.

2.3. Example: 1− xn. Define the polynomial p by

p(x) = 1− xn = 1 + eiπxn

Analysis in terms of explicit sweep formulas and so forth is unnecessarily complicated, so we will
proceed using basic principles. We begin with the observation that, as p has only two terms, the
exceptional component of dsig never applies, so that dsig(p)(θ) = b 1

πsweepp(θ)c for all θ.

Now, the auxiliary polynomial for p is

pθ(x) := 1 + ei(π+nθ)xn

so that the sweep of pθ is exactly the smaller angle in the complex plane determined by the positive
x axis and the terminal ray in direction π + nθ. That angle has measure less than π except when
nθ is a multiple of 2π. As a result,

dsig(p)(θ) =
{

1, θ = 2πk/n for k = 0, 1, . . . , n− 1
0, otherwise

The Descartes signature, then, distinguishes n equally-spaced angles (including 0) as possible argu-
ments for roots of p, and the signature rules out the existence of any roots with multiplicity greater
than 1. (See Figure 5.) Bolstered by the Fundamental Theorem of Algebra (p must have n roots)
and the fact that each of the roots necessarily has modulus 1, the Descartes signature has exactly
identified the n-th Roots of Unity.

Being derived solely from the arguments of the polynomial’s coefficients, this Descartes signature
is shared by every polynomial of the form a− bxn, for positive a and b.

2.4. Example: 1 + x+ x2 + · · ·+ xn. Define the polynomial q by

q(x) = 1 + x+ x2 + · · ·+ xn

where n > 0. Note that q(x) · (1 − x) = 1 − xn+1; thus, q’s roots should be all (and only) the
(n + 1)-th Roots of Unity except for 1. We shall see how well analysis of the Descartes signature
does in getting us to those roots.
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Figure 5. Graphs of sweepp (purple) and the (scaled-up) Descartes signature
(black) for p(x) := 1 − x6, showing the only non-zero Descartes bounds in the
directions of the 6th Roots of Unity. (Signature values have been multiplied by π to
better show the relationship with the sweep graph. The exceptional component of
dsig is never used.) This signature is shared by all polynomials a− bx6 for positive
a and b.

With arg ck = 0 and mk = k for all k, we can click through various computations quickly:

sweep+(q) = sweep−(q) = 0

Sq = {0, 0, . . . , 0} (|Sq| = n) σp(0, θ] = 0 σp[0, θ) = n (θ > 0)

sweep+
q (θ) = θn sweepq(θ) =

{
θn, 0 ≤ θ < π

(2π − θ)n, π ≤ θ < 2π

Tq =
{π
n
m
}2n−1

m=0
Uq =

n−1⋂
k=1

{π
k
m
}2k−1

m=0
=
{

∅, n = 1
{0, π}, n > 1

Now, shuffling the definitional components of sweepq with the definitional components of dsig yields

(21) dsig(q)(θ) =



⌊
n
πθ
⌋

, θ = 0, π

n
πθ − 1 , θ = π

nm
∣∣ m = 1, 2, . . . , n− 1⌊

n
πθ
⌋

, π
n(m− 1) < θ < π

nm
∣∣ m = 1, 2, . . . , n

n
π (2π − θ)− 1 , θ = π

n(2n−m)
∣∣ m = 1, 2, . . . , n− 1⌊

n
π (2π − θ)

⌋
, π

n(2n−m) < θ < π
n(2n−m+ 1)

∣∣ m = 1, 2, . . . , n

(valid for all n > 0), which simplifies to

(22) dsig(q)(θ) =



0 , θ = 0⌈
n
πθ
⌉
− 1 , 0 < θ < π

n , θ = π

2n−
⌊
n
πθ
⌋
− 1 , π < θ < 2π



12 B.D.S. “DON” MCCONNELL

0 Π
2

Π 3 Π
2

2 Π

Π

2 Π

3 Π

4 Π

5 Π

Figure 6. Graphs of sweepq (purple) and the (scaled-up) Descartes signature
(black and green) for q(x) := 1 + x + x2 + · · · + x5. (Signature values have been
multiplied by π to better show the relationship with the sweep graph. Green dots
indicate values at which the exceptional component of dsig is used.) This signature
is shared by all 5th degree polynomials with a full set of five strictly positive coeffi-
cients.

This Descartes signature rules out roots in the direction θ = 0 (corresponding to the obvious non-
root 1), but does not conspicuously feature the remaining (n+ 1)-th Roots of Unity that we know
to be the roots of q. (Note that the signature does not —as it should not— rule out these other
Roots of Unity, as their directions occur outside of the zero-height plateaux of the graph in Figure
6.)

Of course, such vaguaries are to be expected: the Descartes signature computed here is the signa-
ture, not only of our q, but of every n-th degree polynomial with a full set of strictly positive real
coefficients. The signature must account for every possible arrangement of roots in such polynomi-
als, not merely q’s symmetrically-placed and multiplicity-1 Roots of Unity.

While not effective at narrowing the potential root pool to a finite collection, this signature provides
a great deal of information about the polynomials it reflects: no positive real is a root (something
we already knew), but in fact neither is any complex number with argument up to π/n; no number
with argument up to 2π/n is a double-root, no number with argument up to 3π/n is a triple-root,
and so forth; the only possibility for a root with multiplicity n is a negative real (something, again,
we already knew).

We conclude by observing that this signature offers some potentially egregious overestimates on
root counts, allowing for non-real roots with multiplicity up to n− 1. For n > 2, this is simply not
possible within the given class of polynomials: the non-real roots of any polynomial with positive
(or even merely real) coefficients must occur in conjugate pairs, so any non-real root can have
multiplicity no greater than n/2.
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3. Epilog

I have created an interactive Mathematica 6 notebook for investigating coefficient sweeps and
the Descartes signature. (The figures in this paper come from that notebook.) I submitted the
notebook to the Wolfram Demonstration Project8 with the title “Descartes Signature Explorer”
and will update this document with a proper citation when the WDP accepts it for publication.
Interested parties can email me directly for the notebook file.

A note about computer-generated graphs of the Descartes signature: The condition distinguishing
the components of the Descartes Signature formula (see Equations (17) and (20)) resists accurate
plotting-by-random-sampling. The inherent imprecision of computing a number’s argument, com-
bined with the need to compare such arguments against the irrational π, provide an ever-present
danger of erroneous evaluation of the condition, with a near-certainty that a handful of isolated
“exceptional” values will not appear in the sampled set. With this in mind, it is generally preferable
to pre-compute all points of discontinuity —via sets Sr, Tr, and Ur (see Equations (14), (18), and
(19))— and to construct the piece-wise constant elements of the signature graph directly.

B.D.S. “Don” McConnell
math@daylateanddollarshort.com

8http://demonstrations.wolfram.com


