
Calculus-free Derivatives of Sine and Cosine

B.D.S. McConnell
math@daylateanddollarshort.com

Wrap a square smoothly around a cylinder, and the curved images of the
square’s diagonals will trace out helices, with the (original, uncurved) diag-
onals tangent to those curves. Projecting these elements into appropriate
planes reveals an intuitive, geometric development of the formulas for the
derivatives of sine and cosine, with no quotient of vanishing differences re-
quired. Indeed, a single —almost-“Behold!”-worthy— diagram and a short
notational summary (see the last page of this note) give everything away.

The setup. Consider a cylinder (“C”) of radius 1 and a unit square (“S”),
with a pair of S’s edges parallel to C’s axis, and with S’s center (“P”) a
point of tangency with C’s surface. We may assume that the cylinder’s axis
coincides with the z axis; we may also assume that, measuring along the
surface of the cylinder, the (straight-line) distance from P to the xy-plane is
equal to the (arc-of-circle) distance from P to the zx-plane. That is, we take
P to have coordinates (cos θ0, sin θ0, θ0) for some θ0, where cos() and sin()
take radian arguments.

Wrapping S around C causes the image of an extended diagonal of S
to trace out the helix (“H”) containing all (and only) points of the form
(cos θ, sin θ, θ). Moreover, the original, uncurved diagonal segment of S de-
termines a vector, v :=< vx, vy, vz >, tangent to H at P ; taking vz = 1, we
assure that the vector conveniently points “forward” (that is, in the direction
of increasing θ) along the helix.

Most importantly, the projection of H into each coordinate plane has the
corresponding projection of v as a tangent vector at the projection of P .

The fun begins. The projection (“Hxy”) of H along the axis of the cylin-
der and into the xy-plane is the unit circle centered at the origin; the
corresponding projection, vxy :=< vx, vy, 0 >, of v is tangent to Hxy at
Pxy := (cos θ0, sin θ0, 0). Elementary geometry dictates that vxy must be
perpendicular to the radius joining Pxy to the origin. Consequently, since
vxy is a unit vector (it is congruent to an edge of the square) and is point-
ing in the direction of increasing θ (just like v), we have vx = − sin θ0 and
vy = cos θ0, so that v =< − sin θ0, cos θ0, 1 >.
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In the zy-plane, the projection (“Hzy”), of H is the graph of the relation
y = sin z. The projection, vzy, of v is tangent to this curve at Pzy. Therefore,
at the point (z0, y0) = (θ0, sin θ0) = (z0, sin z0), the derivative of sine —by
conceptual definition, the “change-in-y over change-in-z” slope of the line
tangent to the graph— is vy/vz = cos θ0/1 = cos θ0 = cos z0.

Likewise, examining the projection of H into the zx-plane, we have that
the derivative of cosine —the “change-in-x over change-in-z” slope of the line
tangent to x = cos z— at point (z0, cos z0) is vx/vz = − sin z0.

The derivative formulas are thereby established.

Remarks Sinusoids now join conic sections and a few other examples in
the list of curves whose tangent line behavior can be revealed —and perhaps
should be introduced— without the sophisticated machinery of Differential
Calculus. Familiarity with these behaviors may better prepare a student to
face that machinery when the time comes.
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H :  < cos !, sin !, !>

Hzx :  x = cos z              Hzy : y = sin z

Hxy : x
2
 + y

2
 = 1

v := < vx, vy, 1 >

Hxy : vxy ⊥
−−−→
OPxy =⇒ vxy = < − sin θ0, cos θ0, 0 >

=⇒

{
vzx = < − sin θ0, 0, 1 >

vzy = < 0, cos θ0, 1 >

=⇒


Hzx :

d

dz
cos z z=θ0

def
=

∆x

∆z
=
− sin θ0

1
= − sin θ0

Hzy :
d

dz
sin z z=θ0

def
=

∆y

∆z
=

cos θ0

1
= cos θ0
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